Anomalous diffusion and Homogenization on an infinite number of scales
نویسندگان
چکیده
It is now well known that natural Brownian Motions on various disordered or complex structures are anomalously slow, and that convection in a turbulent flow can create anomalously fast diffusion. In this work we try to understand the basic mechanisms of anomalous diffusion using and developing the tools of homogenisation. These mechanisms of the slow diffusion for instance are well understood for very regular strictly self-similar fractals. The archetypical specific example of a deep problem being the one solved by Barlow and Bass on the Sierpinski Carpet (which is infinitely ramified, a codeword for hard to understand rigorously). It appears that the main feature is the existence of an infinite number of scales of obstacle (with proper size) for the diffusion. We can show that one can implement the common idea that this last feature (infinitely many scales) is the key for the possibility of anomalous diffusion, fast and slow, in a general context, using the tools of homogenisation. Résumé Il est maintenant bien connu que des mouvements Browniens naturels sur diverses structures complexes et désordonnées sont anormalement lentes, et qu’une convection dans un écoulement turbulent peut créer une diffusion anormalement rapide. Dans ce travail, nous essayons de comprendre les mécanismes fondamentaux des diffusions anormales en utilisant et développant les outils de l’homogénéisation. Ces mécanismes, pour les diffusions lentes par exemple, sont bien comprises pour des Fractals très régulier et self-similaires. L’exemple spécifique archétype d’un profond problème étant celui résolu par Barlow et Bass sur le Tapis de Sierpinski (qui est infiniment ramifié, un nom de code signifiant difficile à comprendre rigoureusement). Il apparâit que la caractéristique essentielle est l’existence d’un nombre infini d’échelles d’obstacles (avec des tailles convenables) pour la diffusion. On peut montrer que l’on peut implémenter l’idée commune que cette dernière caractéristique (un nombre infini d’échelles) est la clé pour la possibilité d’une diffusion anormale, rapide et lente, dans un contexte général, en utilisant les outils de l’homogénéisation.
منابع مشابه
Multiscale Homogenization with Bounded Ratios and Anomalous Slow Diffusion
Abstract We show that the effective diffusivity matrix D(V n) for the heat operator ∂t − (1/2 − ∇V n∇) in a periodic potential V n = n k=0 Uk(x/Rk) obtained as a superposition of Hölder-continuous periodic potentials Uk (of period Td := R d/Zd , d ∈ N∗, Uk(0) = 0) decays exponentially fast with the number of scales when the scale ratios Rk+1/Rk are bounded above and below. From this we deduce t...
متن کاملAnomalous Slow Diffusion from Perpetual Homogenization
This paper is concerned with the asymptotic behavior solutions of stochastic differential equations dyt = dωt − ∇V (yt)dt, y0 = 0. When d = 1 and V reflects media characterized by an infinite number of spatial scales V (x) = ∞ k=0 Uk(x/Rk), where Uk are smooth functions of period 1, Uk(0) = 0, and Rk grows exponentially fast with k, we can show that yt has an anomalous slow behavior and obtain ...
متن کاملSuper-diffusivity in a shear flow model from perpetual homogenization
This paper is concerned with the asymptotic behavior solutions of stochastic differential equations dyt = dωt − ∇Γ(yt)dt, y0 = 0 and d = 2. Γ is a 2 × 2 skew-symmetric matrix associated to a shear flow characterized by an infinite number of spatial scales Γ12 = −Γ21 = h(x1), with h(x1) = ∑ ∞ n=0 γnh (x1/Rn) where h n are smooth functions of period 1, hn(0) = 0, γn and Rn grow exponentially fast...
متن کاملANOMALOUS SLOW DIFFUSION FROM PERPETUAL HOMOGENIZATION BY HOUMAN OWHADI Universite de Provence
This paper is concerned with the asymptotic behavior of solutions of stochastic differential equations dyt = dωt − ∇V (yt ) dt , y0 = 0. When d = 1 and V is not periodic but obtained as a superposition of an infinite number of periodic potentials with geometrically increasing periods [V (x)= ∑∞ k=0 Uk(x/Rk), where Uk are smooth functions of period 1, Uk(0)= 0, and Rk grows exponentially fast wi...
متن کاملSoret and chemical reaction effects on a three-dimensional MHD convective flow of dissipative fluid along an infinite vertical porous plate
An analytical study was performed to study effects of thermo-diffusion and chemical reactions on a three-dimensional MHD mixed convective flow of dissipative fluid along an infinite vertical porous plate with transverse sinusoidal suction velocity. The parabolic partial differential equations governing the fluid flow, heat transfer, and mass transfer were solved using perturbation technique and...
متن کامل